Nullity invariance for pivot and the interlace polynomial

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nullity Invariance for Pivot and the Interlace Polynomial

We show that the effect of principal pivot transform on the nullity values of the principal submatrices of a given (square) matrix is described by the symmetric difference operator (for sets). We consider its consequences for graphs, and in particular generalize the recursive relation of the interlace polynomial and simplify its proof.

متن کامل

Binary nullity, Euler circuits and interlace polynomials

A theorem of Cohn and Lempel [J. Combin. Theory Ser. A 13 (1972), 83-89] gives an equality involving the number of directed circuits in a circuit partition of a 2-in, 2-out digraph and the GF (2)-nullity of an associated matrix. This equality is essentially equivalent to the relationship between directed circuit partitions of 2-in, 2-out digraphs and vertexnullity interlace polynomials of circl...

متن کامل

A multivariate interlace polynomial

We define a multivariate polynomial that generalizes several interlace polynomials defined by Arratia, Bollobas and Sorkin on the one hand, and Aigner and van der Holst on the other. We follow the route traced by Sokal, who defined a multivariate generalization of Tutte’s polynomial. We also show that bounded portions of our interlace polynomial can be evaluated in polynomial time for graphs of...

متن کامل

On the Complexity of the Interlace Polynomial

We consider the two-variable interlace polynomial introduced by Arratia, Bollobás and Sorkin (2004). We develop two graph transformations which allow us to derive point-to-point reductions for the interlace polynomial. Exploiting these reductions we obtain new results concerning the computational complexity of evaluating the interlace polynomial at a fixed point. Regarding exact evaluation, we ...

متن کامل

Isotropic systems and the interlace polynomial

Through a series of papers in the 1980’s, Bouchet introduced isotropic systems and the Tutte-Martin polynomial of an isotropic system. Then, Arratia, Bollobás, and Sorkin developed the interlace polynomial of a graph in [ABS00] in response to a DNA sequencing application. The interlace polynomial has generated considerable recent attention, with new results including realizing the original inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2011

ISSN: 0024-3795

DOI: 10.1016/j.laa.2011.01.024